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Abstract

This research presents an analytical model to investigate vibration due to ball bearing waviness in a
rotating system supported by two or more ball bearings, taking account of the centrifugal force and
gyroscopic moment of the ball. The waviness of rolling elements is modelled by the sinusoidal function, and
it is incorporated into the position vectors of the race curvature center. The Hertzian contact theory is
applied to calculate the elastic deflection and non-linear contact force, while the rotor has translational and
angular motions. Both the centrifugal force and gyroscopic moment of the ball and the waviness of the
rolling elements are included in the kinematic constraints and force equilibrium equations of a ball to derive
the non-linear governing equations of the rotor, which are solved by using the Runge–Kutta–Fehlberg
algorithm to determine the new position of the rotor. The proposed model is validated by the comparison
of the results of the prior researchers. This research shows that the centrifugal force and gyroscopic moment
of the ball plays the important role in determining the bearing frequencies, i.e., the principal frequencies,
their harmonics and the sideband frequencies resulting from the waviness of the rolling elements of ball
bearing. It also shows that the bearing vibration frequencies are generated by the waviness interaction not
only between the rolling elements of one ball bearing, but also between those of two or more ball bearings
constrained by the rotor.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Waviness is defined as the geometric imperfection of a ball, inner or outer race in a ball bearing,
and it is considered one of the important sources of machine vibration. It is always included in a
ball bearing to varying degrees through the manufacturing process. Although the rolling elements
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are perfectly manufactured without waviness, it may be generated by load or operating
conditions. Therefore, it is becoming important to investigate the dynamic characteristics of
rotating systems due to the effect of ball bearing waviness in order to achieve high precision and
sound operation of modern sophisticated rotating machines.
Wardle [1,2] calculated the relations between the amplitude of waviness and the excitation force

of a ball bearing, and his results were validated through experiments. He also predicted the
vibration frequencies due to the load–deflection non-linearity of the ball bearing. However, his
model only included a ball bearing without considering a rotor, so that it could not predict the
waviness interaction between two or more ball bearings to support the same rotor. Yhland [3]
used a linear theory to calculate the stiffness matrix of the ball bearing with waviness, and he
investigated the effect of waviness through his rotor dynamic model. Akt .urk et al. [4,5] proposed a
vibration model of a ball bearing with waviness considering three degrees of freedom. Recently,
Jang and Jeong [6] proposed the excitation model of ball bearing waviness in a rigid rotor
considering five degrees of freedom, and they investigated the vibration frequencies due to non-
linear load–deflection characteristics. However, prior research did not consider the effect of the
waviness considering the centrifugal force and gyroscopic moment of the ball. In addition to
waviness, the centrifugal force and gyroscopic moment of the ball are important parameters to
affect the characteristics of ball bearing vibration, so that, in some cases, the results of the prior
research may be quite different from the results considering both the waviness of rolling elements
and the centrifugal force and gyroscopic moment of the ball.
This research presents an analytical model to investigate vibration due to ball bearing waviness

in a rotating system supported by two or more ball bearings, taking account of the centrifugal
force and gyroscopic moment of the ball. The waviness of rolling elements is modelled by the
sinusoidal function, and the centrifugal force and gyroscopic moment of the ball are included in
the kinematic constraints and force equilibrium equations to produce the non-linear governing
equations, which can be determined by using the Runge–Kutta–Fehlberg algorithm. The
proposed model is validated by the comparison of the results of the prior researchers. This
research characterizes the bearing frequencies, i.e., the principal frequencies, their harmonics and
sideband frequencies, due to the waviness interaction between the rolling elements of two ball
bearings constrained by the rotor as well as the effect of the centrifugal force and gyroscopic
moment of the ball.

2. Method of analysis

2.1. Waviness model

Fig. 1 shows the rigid rotor supported by a pair of ball bearings. The following equations can
represent the radial waviness of the inner and outer race, pij and poj , and the axial waviness of the
inner and outer race, qij and qoj [6,9].

poj ¼
XO

l¼1

Aol cos �lðoo � ocÞt þ 2plðj � 1Þ=Z þ aol

� �
; ð1Þ
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pij ¼
XO

l¼1

Ail cos �lðoi � ocÞt þ 2plðj � 1Þ=Z þ ail

� �
; ð2Þ

qoj ¼
XO

l¼1

Bol cos �lðoo � ocÞt þ 2plðj � 1Þ=Z þ bol

� �
; ð3Þ

qij ¼
XO

l¼1

Bil cos �lðoi � ocÞt þ 2plðj � 1Þ=Z þ bil

� �
: ð4Þ

In the above equations, l; Z; oc,oo, and oi are the waviness order, number of balls and the cage,
outer race, and inner race rotating frequencies, respectively, and Aol, Ail , Bol, Bil and aol , ail , bol ,
bil are the amplitudes and initial phase angles of the inner and outer race in contact with the jth
ball.
The phase angle of ball waviness in contact with the outer race is 180� ahead of the ball

waviness in contact with the inner race, so that the ball waviness in contact with the inner and
outer race, wij and woj; can be expressed as follows:

wij ¼
XO

l¼1

Cjl cosðlobt þ gjlÞ
� �

; ð5Þ

woj ¼
XO

l¼1

Cjl cos lob t þ
p
ob

� �
þ gjl

� �� 	
; ð6Þ

where ob; Cjl and gjl are the ball spinning frequency, the amplitude and initial phase angle of the
jth ball with waviness order l; respectively.

2.2. Kinematic constraint and force equilibrium equations of a ball considering waviness

The position vectors of the groove radius center of the inner and outer race in contact
with the jth ball, ~RRij and ~RRoj; can be determined from the mass center of the rotor as shown in
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Fig. 1. (a) Rigid rotor supported by two ball bearings in x2z plane, (b) ball bearing in x2y plane.
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Fig. 1 [6].

~RRijðtÞ ¼ Ri coscj
~ii þ Ri sin cj

~jj þ ai
~kk; ð7Þ

~RRojðtÞ ¼ Ro cos cj
~ii þ Ro sin cj

~jj þ ao
~kk: ð8Þ

In the above equations, Ri; Ro; ai and ao are the radial and axial components of the position
vectors of the groove radius center of the inner and outer race, and they can be expressed in terms
of the pitch diameter dm; the distance between the groove radius centers of inner and outer race d;
and contact angle a: Also, cj is the azimuth angle of the jth ball in the x2y plane, and it can be
expressed in terms of the cage rotating frequency [8,9].
When a ball bearing operates at high speed, the centrifugal force and gyroscopic moment of the

ball are not negligible, so that the contact angles of the inner and outer race are dissimilar and that
the groove radius center of the inner race is not collinear with that of the outer race. Fig. 2 shows
the position of the ball center and the race curvature center with and without including the
centrifugal force and gyroscopic moment of the ball with respect to the same outer race curvature
center. In Fig. 2, Xzj; Xrj; aij ; aoj;, lij and loj are the axial and radial components of the position of
the ball center, the contact angles of the inner and outer race, and the distances between the ball
center and the groove radius centers of the inner and outer race, respectively. Considering the
effect of ball waviness in contact with the inner and outer race, wij and woj; and ball oversize, hj;
the following equations determine lij and loj:

lij ¼ ri � ðD þ hjÞ=2� wij ;

loj ¼ ro � ðD þ hjÞ=2� woj; ð9Þ

where ri and ro are the groove radius of the inner and outer race.
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Fig. 2. Position of ball center and raceway curvature centers.
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In the inner-race rotating type of ball bearing, the inner race has translational and angular
motion, and the outer race is stationary during the rotation of the ball bearing. Under the angular
motions of yx and yy and the translational motions of x; y and z; the position vector of the inner
race groove radius center can be determined by transformation using the Euler angle. The
difference between this vector and the position vector of the outer race groove radius center can be
decomposed into the radial and axial directions. Introducing the waviness in Eqs. (1)–(4) to the
position vectors of the groove radius centers of the inner and outer race, the distance between the
two position vectors can be expressed as follows [6]:

Drj ¼ðRi � RoÞ þ aiðyy coscj � yx sin cjÞ þ x coscj

þ y sin cj þ ðpij � pojÞ þ qijðyy coscj � yx sin cjÞ;

Dzj ¼ðai � aoÞ þ Riðyx sin cj � yy coscjÞ þ z þ ðqij � qojÞ

þ pijðyx sin cj � yy coscjÞ; ð10Þ

where Drj and Dzj are the radial and axial component of the distance between the groove radius
centers of the inner and outer race. In the case of the outer-race rotating type of ball bearing, the
outer race has translational and angular motion and the inner race is stationary during the
rotation of the ball bearing. Similar expressions can be derived to determine the distance between
the position vectors of the groove radius center of the inner and outer race. Applying the
Pythagorean theorem to Fig. 2, the following equations can be obtained [7,9]:

Dzj � Xzj


 �2þ Drj � Xrj


 �2� lij þ dij


 �2¼ 0;

X 2
zj þ X 2

rj � loj þ doj


 �2¼ 0; ð11Þ

where dij and doj are the elastic deformation of the contact point between the ball and each race.
Fig. 3 shows the free-body diagram of the ball acted by the contact forces of the inner and outer

race, fij and foj and the centrifugal force and gyroscopic moment of a ball, Fcj and MGj: In Fig. 3,
D and z are the ball diameter and the angle between the spinning axis of the ball and the bearing
centerline, and lij and loj are the constants determined by the race control theory [9]. Force
equilibrium of a ball can result in the following equations [7,9]:

fij sin aij � foj sin aoj �
lijMGj

D
cos aij þ

lojMGj

D
cos aoj ¼ 0;

fij cos aij � foj cos aoj þ
lijMGj

D
sin aij �

lojMGj

D
sin aoj þ Fcj ¼ 0: ð12Þ

The contact force between the ball and race are expressed by using the Hertzian contact theory as
follows:

fij ¼ Kijd
1:5
ij ; foj ¼ Kojd

1:5
oj ; ð13Þ

where Kij ; Koj ; dij; and doj are the load–deflection constants and deflections of the contact point
between the ball and each race.
The centrifugal force and gyroscopic moment of a ball can be expressed as follows [9]:

Fcj ¼ 0:5mbdmo2
c ; ð14Þ
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MGj ¼ Ipoboc sin z; ð15Þ

where mb and Ip are the mass and mass moment of inertia of a ball. In the case of the inner-race
rotating type of ball bearing, the pitch diameter, cage rotating frequency and ball spinning
frequency can be expressed as follows [9]:

oc ¼
oi þ oo

dm þ D cos aoj

dm � D cos aij

� �
cosðaij � zÞ
cosðaoj � zÞ

1þ
dm þ D cos aoj

dm � D cos aij

� �
cosðaij � zÞ
cosðaoj � zÞ

; ð16Þ

ob ¼
oo � oi

D
cosðaij � zÞ

dm � D cos aij

þ
cosðaoj � zÞ

dm þ D cos aoj

� 	; ð17Þ

dm ¼ d 0
m þ 2Xrj � 2loj cos a; ð18Þ

where dm

0

is the free pitch diameter and oo and oi are the rotating speeds of the outer and inner
race. Non-linear kinematic constraint equations in Eq. (11) and force equilibrium equations in
Eq. (12) can be solved simultaneously by using the Newton–Raphson iteration method to
determine Xzj ; Xrj; dij ; and doj;: The sine and cosine of the contact angles are calculated
as follows:

cos aoj ¼
Xrj

loj þ doj

; sin aoj ¼
Xzj

loj þ doj

;

cos aij ¼
Drj � Xrj

lij þ dij

; sin aij ¼
Dzj � Xzj

lij þ dij

: ð19Þ
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Fig. 3. Ball loading at arbitrary azimuth angle, cj :
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According to the race control theory, z; lij; and loj of Eqs. (12) and (15) are expressed as follows:

z ¼ tan�1 dm sin aoj

dm cos aoj þ D

� �
;

lij ¼ 0; loj ¼ 2: ð20Þ

2.3. Equation of rotor motion with ball bearing excitation

In the case of the inner-race rotating type of ball bearing, the forces and moments acting on the
inner race can be calculated by the following equations:

Fx ¼
XNB

k¼1

XZ

j¼1

fij cos aij þ
lijMGj

D
sin aij

� �
cos cj

" #
;

Fy ¼
XNB

k¼1

XZ

j¼1

fij cos aij þ
lijMGj

D
sin aij

� �
sin cj

" #
;

Fz ¼
XNB

k¼1

XZ

j¼1

fij sin aij �
lijMGj

D
cos aij

� �" #
;

Mx ¼
XNB

k¼1

XZ

j¼1

fijtij �
lijMGj

D
eij þ

lijMGj

D
ri

� �
sin cj

" #
;

My ¼ �
XNB

k¼1

XZ

j¼1

fijtij �
lijMGj

D
eij þ

lijMGj

D
ri

� �
coscj

" #
: ð21Þ

In the above equations, NB is the number of ball bearings, and eij and tij can be expressed as
follows:

eij ¼ Ri cos aij þ ai sin aij; tij ¼ Ri sin aij � ai cos aij: ð22Þ

Applying these forces and moments to the force and moment equilibrium conditions, the
equations of motion can be derived as follows:

m .x þ Fx ¼ 0; m .y þ Fy ¼ 0; m.z þ Fz ¼ 0;

Iz
.yx þ IrO’yx þ Mx ¼ 0; Iz

.yy � IrO’yx þ My ¼ 0; ð23Þ

where m; Ir; Iz; and O is the mass of the rotor, the radial mass moment of inertia, the polar mass
moment of inertia and the rotating speed of the rotor, respectively.

3. Results and discussion

3.1. Analysis model and numerical procedure

This research investigates vibration resulting from ball bearing waviness in a rigid rotor
supported by a pair of ball bearings, as shown in Fig. 1. The analysis model has a pair of inner-

ARTICLE IN PRESS

G. Jang, S.-W. Jeong / Journal of Sound and Vibration 269 (2004) 709–726 715



race rotating type ball bearings. Tables 1 and 2 show the specification of the spindle system and
the ball bearing. It is assumed that the radial and axial waviness at the left and right ball bearings
have 0� and 180� phase differences, respectively, and that the mass center of the rotor coincides
with the span center of the ball bearing. Therefore, when two ball bearings have the same waviness
amplitude, the axial force in the pair of ball bearings cancel each other and the axial vibration
does not exist.
Fig. 4 shows the numerical procedure to calculate the ball bearing vibration due to the effect of

waviness. Once the initial contact angles and elastic deformations of each ball are calculated under
the application of preload, the waviness of each race is introduced to the position vectors of the
groove radius center with respect to the mass center of the rotor, and the ball waviness is
introduced by considering the kinematic constraints between the ball and each race. The
simultaneous algebraic equations of the kinematic constraints in Eq. (11) and the force
equilibrium equations in Eq. (12) are solved to calculate the elastic deformation and the position
of each ball by using the Newton–Raphson iteration method. The permissible error of the
Newton–Raphson iteration method is 10�15% and the time step is 10�5 s. Then, bearing forces
and moments acting on the rotor are calculated by using Eq. (21), and the equations of motion in
Eq. (23) are solved by using the Runge–Kutta–Fehlberg method. Initial time step is 10�12 s, and
the permissible integration error is 10�5%. Also small numerical damping, which is 10�5 of the
stiffness, is introduced to the equations of translational motion only in order to prevent the
divergence of the solution [10]. The data with constant time step are obtained through linear
interpolation, and Fourier transformation is performed to investigate the characteristics of
bearing forces and displacements.
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Table 1

Specification of spindle system

Parameter Value

Radial mass moment of inertia, Ir 3.985� 10�3 (kgm2)

Polar mass moment of inertia, Iz 7.534� 10�3 (kgm2)

Mass, m 8.6� 10�1 (kg)

Bearing span 8.0� 10�2 (m)

Number of bearing 2

Table 2

Specification of ball bearing

Parameter Value

Number of ball, Z 16

Ball diameter, D 22.23� 10�3 (m)

Free pitch diameter, dmo 125.26� 10�3 (m)

Axial preload, Pz 10 (kN)

Groove radius of inner race, ri 11.63� 10�3 (m)

Groove radius of outer race, ro 11.63� 10�3 (m)

Diametral clearance, Pd 0.43� 10�3 (m)

Waviness amplitude, A 1� 10�6 (m)
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The natural frequencies of the analysis model are calculated at the rotating speed of 10000 rpm,
and they are 657, 745, 2361, and 3073Hz, corresponding to the backward rocking, forward
rocking, radial and axial modes, respectively. Also, the effect of the numerical damping is almost
negligible and it only shifts the natural frequencies by 0.1Hz (0.01%), 0.1Hz (0.01%), 1.9Hz
(0.12%), and 7.3Hz (0.3%), corresponding to the backward rocking, forward rocking, radial and
axial modes, respectively.

3.2. Bearing vibration due to the centrifugal force and gyroscopic moment of ball

The bearing contact force due to the waviness of the rolling elements produces not only the
principal frequencies but also their harmonics and sideband frequencies due to the non-linear
load–deflection characteristics. Table 3 shows the axial and radial vibration frequencies with the
variation of waviness order presented by prior researchers [1,3]. Table 4 shows the sideband
frequencies due to the waviness interaction between the rolling elements by prior researchers [1],
and Table 5 shows the radial sideband frequencies additionally generated by the interaction
between the waviness to produce the axial and radial vibration by prior researchers [6]. Based on
Tables 3–5, principal frequencies and sideband frequencies are represented as the linear
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Fig. 4. Numerical procedures to calculate the ball bearing vibration due to the effect of waviness.
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combination of the number of balls, rotating frequency of inner race and cage, and ball spinning
frequency.
Table 6 shows the principal vibration frequencies due to the various waviness of the rolling

element by prior researchers [3], and by this proposed method with or without considering the
centrifugal force and moment of ball. To validate the accuracy of this research, the vibration
frequencies due to the effect of the waviness of the ball bearing without considering the centrifugal
force and gyroscopic moment of the ball are compared with those of the prior researchers as
shown in the third and fourth columns of Table 6. It shows that the proposed model exactly
matches those of prior researchers, and that the centrifugal force and gyroscopic moment of the
ball change the principal frequencies in this model significantly as shown in the fifth column of
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Table 3

Principal vibration frequencies (i ¼ 1) and their harmonics (i > 1) due to the waviness of the rolling elements (iX1:

intger, Z: number of ball, f : rotating frequency of inner race, fc: cage rotating frequency, fb: ball spinning frequency)

Type of waviness Waviness order Principal frequencies and their harmonics (Hz) Type of motion

Outer race l ¼ iZ iZfc Axial

l ¼ iZ71 iZfc Radial

Inner race l ¼ 1 f Radial

l ¼ iZ iZðf � fcÞ Axial

l ¼ iZ71 iZðf � fcÞ7f Radial

Ball Oversize fc Radial

l ¼ 2i 2ifb Axial

l ¼ 2i 2ifb7fc Radial

Table 4

Sideband frequencies due to the waviness interaction between the rolling elements [1]

Interacting surfaces Sideband frequencies (Hz)

Axial vibration Radial vibration

Outer race iZfc7jfc iZfc7jfc

Ball oversize

Outer race iZfc7j2fb iZfc7j2fb

Ball

Outer race iZfc7jf iZfc7if

Inner race

Inner race iZðf2fcÞ þ jfc iZðf2fcÞ7f7jfc

Ball oversize

Inner race iZðf2fcÞ72jfb iZðf2fcÞ7f72jfb

Ball

G. Jang, S.-W. Jeong / Journal of Sound and Vibration 269 (2004) 709–726718



Table 6. The centrifugal force and gyroscopic moment of a ball increase the contact angle of the
inner race, and they decrease the contact angle of the outer race and angle z; so that the cage
rotating frequency and ball spinning frequency increase as shown in Eqs. (16) and (17). Therefore,
the principal vibration frequencies due to ball waviness (2fb7fc and 2fb) and outer race waviness
(Zfc) become bigger than those in the case without considering the centrifugal force and
gyroscopic moment of the ball, and the principal vibration frequencies due to inner race waviness
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Table 5

Radial sideband frequencies due to the waviness interactions between the waviness of axial and radial vibration [6]

Interacting surfaces Waviness order Sideband frequencies (Hz)

Outer race l ¼ iZ iZfc72jfb7fc

Ball l ¼ 2i

Outer race l ¼ iZ iZfc7jZðf2fcÞ7f

Inner race l ¼ iZ71

Outer race l ¼ iZ71 iZfc7jZðf2fcÞ
Inner race l ¼ iZ

Inner race l ¼ iZ iZðf2fcÞ7jfc

Ball oversize 1

Inner race l ¼ iZ iZðf2fcÞ72jfb7fc

Ball l ¼ 2i

Table 6

Comparisons of principal vibration frequencies due to the waviness of the rolling elements

Type Waviness order Principal frequencies (Hz) Type of motion

Prior

model [3]

Proposed

model without

Fcj and MGj

Proposed

model with

Fcj and MGj

Cage rotating frequency fc 71.63 72.06 76.72

Ball spinning frequency fb 460.30 461.11 500.91

Outer race 15 1146.10 1146.52 1227.60 Radial

16 1146.10 1146.10 1227.60 Axial

17 1146.10 1146.10 1227.60 Radial

Inner race 15 1353.90 1650.47 1272.40 Radial

16 1520.57 1517.15 1439.10 Axial

17 1687.24 1680.81 1605.73 Radial

Ball 848.97 850.07 925.09 Radial

2 920.60 922.23 1001.82 Axial

992.23 994.39 1078.54 Radial
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(Zðf � fcÞ7f and Zðf � fc)) become smaller than those in the case without considering the
centrifugal force and gyroscopic moment of the ball. The centrifugal force and gyroscopic
moment of a ball also affect the sideband frequencies, because they are represented as the linear
combination of the cage and ball spinning frequencies as shown in Tables 4 and 5. This research
shows that the centrifugal force and gyroscopic moment of a ball play an important role in
determining the bearing vibration frequencies.

3.3. Bearing vibration due to the waviness interaction of two ball bearings constrained by a rotor

Prior researchers investigated the bearing vibration in a rotor supported by a single ball bearing
or by two ball bearings with the same waviness [1,6]. In most cases, however, a rotor is supported
by two or more ball bearings with different waviness. Even if it is supported by two identical ball
bearings, unsymmetrical load distribution may result in different waviness in each bearing.
Figs. 5–7 show the frequency spectra of the radial force, axial force and moment at each bearing

in the case that the left bearing has the ball waviness of order 2 and the right bearing has the inner
race waviness of order 16. In following figures, the characters C;B; I ;O; *, (i; j) and denote the
cage rotating frequency, the principal frequencies due to ball waviness, inner race waviness and
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Fig. 5. Frequency spectra of the radial force at each ball bearing in the case that the left bearing has the ball waviness of

order 2 and the right bearing has the inner race waviness of order 16.
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outer race waviness, their harmonics, and the sideband frequencies in Tables 4 and 5, respectively.
In Fig. 5, the radial force has the principal frequencies due to the ball waviness of order 2 and
their harmonics, because the inner race waviness of order 16 does not generate the radial
vibration. It also has the sideband frequencies in Table 5, which result from the waviness
interaction between the ball waviness of the left bearing to generate radial vibration and the inner
race waviness of the right bearing to generate the axial vibration. In Fig. 6, the axial force has the
principal frequencies due to the ball waviness of order 2 and the inner race waviness of order 16,
and their harmonics. They also have the sideband frequencies in Table 4, which result from the
waviness interaction between the ball waviness of the left bearing and inner race waviness of the
right bearing. Fig. 7 shows the frequency spectra of the moment, which has the same frequency
composition as the radial force, because the radial force in each bearing produces the moment.
Figs. 5–7 show that the principal frequencies and their harmonics in the radial force, axial force
and moment resulting from the waviness of one ball bearing, are transferred to the other bearing
through the rotor. They also show that the sideband frequencies due to the load–deflection non-
linearity may be produced through the rotor not only from the waviness interaction between the
rolling elements of a ball bearing, but also from the waviness interaction between the rolling
elements of two ball bearings constrained by a rotor.
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Fig. 6. Frequency spectra of the axial force at each ball bearing in the case that the left bearing has the ball waviness of

order 2 and the right bearing has the inner race waviness of order 16.
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Fig. 8 shows the frequency spectra of the displacements of the rotor due to the application of
the bearing force and moment in the case that the left bearing has the ball waviness of order 2 and
the right bearing has the inner race waviness of order 16. In Figs. 8(a) and (c), the radial and
angular displacement has the principal frequencies due to the ball waviness of order 2, their
harmonics and the sideband frequencies, which are similar to those of Figs. 5 and 7. However, in
Fig. 8(b), the axial displacement does not have the harmonics and sideband frequencies but only
principal frequencies, because the axial forces in the pair of ball bearings cancel each other.
Resonance is observed in the forward rocking and radial vibration modes (745 and 2361Hz) due
to the excitation of bearing frequencies.
Fig. 9 shows the frequency spectra of the radial force, axial force and moment of the left

bearing in the case that the left bearing has the inner race waviness of order 15 and the right
bearing has the outer race waviness of order 16. The inner race waviness of order 15 generates the
radial vibration, and the outer race waviness of order 16 generates the axial vibration. In Figs.
9(a) and (c), the radial force and moment have the principal frequency and its harmonics due to
the inner race waviness of order 15. Even though the inner race waviness of order 15 at the left
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Fig. 7. Frequency spectra of the moment at each ball bearing in the case that the left bearing has the ball waviness of

order 2 and the right bearing has the inner race waviness of order 16.
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bearing only generates the radial force, the axial force as shown in Fig. 9(b) is generated at the left
bearing through the waviness interaction with the right bearing, which has the outer race waviness
of order 16. However, there exists only the axial force in the right bearing, as shown in Fig. 10,
without the radial force and moment through the waviness interaction of the left bearing with the
inner race waviness of order 15. It can be explained that the axial force is much bigger than the
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Fig. 8. Frequency spectra of the displacements of the rotor due to the application of the bearing force and moment in

the case that the left bearing has ball waviness of order 2 and the right bearing has inner race waviness of order 16.
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Fig. 9. Frequency spectra of the radial force, axial force and moment of the left bearing in the case that the left bearing

has the inner race waviness of order 15 and the right bearing has the outer race waviness of order 16.

Fig. 10. Frequency spectra of the axial force of the right bearing in the case that the left bearing has the inner race

waviness of order 15 and the right bearing has the outer race waviness of order 16.
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radial force in this axially preloaded ball bearing, so that the waviness interaction is transferred
from the axial force to the radial force, not in the opposite direction. Also, sideband frequencies
are not observed in this case. It can be explained that the inner race waviness at the left bearing
does not directly contact the outer race waviness at the right bearing, so that the effect of the
waviness interaction between the two ball bearings is almost negligible.
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Fig. 11. Frequency spectra of the displacements of the rotor due to the application of the bearing force and moment in

the case that the left bearing has the inner race waviness of order 15 and the right bearing has the outer race waviness of

order 16.
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Fig. 11 shows the frequency spectra of the displacements of the rotor due to the application of
the bearing force and moment in the case that the left bearing has the inner race waviness of order
15 and the right bearing has the outer race waviness of order 16. In Figs. 11(a) and (c), the radial
and angular displacement has the principal frequency due to the inner race waviness of order 15,
and its harmonics, which are similar to those of Fig. 9. However, in Fig. 11(b), the axial
displacement does not have the harmonics but only the principal frequency, because the axial
forces in a pair of ball bearings cancel each other. Resonance is observed in the forward rocking
and radial vibration modes (745 and 2361Hz) due to the excitation of bearing frequencies.

4. Conclusions

1. This research presents an analytical model to investigate vibration due to ball bearing waviness
in a rotating system supported by two or more ball bearings, taking account of the centrifugal
force and gyroscopic moment of the ball.

2. The centrifugal force and gyroscopic moment of the ball play an important role in determining
the bearing vibration frequencies, i.e., the principal frequencies, their harmonics and the
sideband frequencies resulting from the waviness of rolling elements of ball bearing.

3. In a rotor supported by two or more ball bearings, the principal frequencies and their
harmonics of the radial force, axial force and moment resulting from the waviness of one ball
bearing is transferred to those of the other bearing through the rotor.

4. In a rotor supported by two or more ball bearings, the sideband frequencies may be produced
not only from the waviness interaction between the rolling elements of one ball bearing, but
also from the waviness interaction between the rolling elements of two or more ball bearings
constrained by a rotor.
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